Applying K Means Clustering And Genetic Algorithm For

This volume presents theories, models, algorithms, and applications in clustering, classification, and visualization. It also includes applications of clustering, classification, and visualization in various fields such as marketing, recommendation system, biology, sociology, and social survey. The contributions give insight into new models and concepts and show the variety of research in clustering, classification, and visualization.

Intelligent Computing Theories and Application

KNN Classifier and K-Means Clustering for Robust Classification of Epilepsy from EEG Signals, A Detailed Analysis

This book presents the proceedings of the 6th International Conference on Advanced Intelligent Systems and Informatics 2020 (AISI2020), which took place in Cairo, Egypt, from October 19 to 21, 2020. This International and interdisciplinary conference, which highlighted essential research and developments in the fields of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE). The book is divided into several sections, covering the following topics: Intelligent Systems, Deep Learning Technology, Document and Sentiment Analysis, Blockchain and Cyber Physical System, Health Informatics and AI against COVID-19, Data Mining, Power and Control Systems, Business Intelligence, Social Media and Digital Transformation, Robotic, Control Design, and Smart Systems.

Applied Unsupervised Learning with R

The clustering application can be used to develop a variety of tourism potential. Currently, halal tourism is a national income that increases every year and is a favorite for Indonesia. The development of halal tourism is supported by a majority population Muslim and as a halal tourist destination in the world. The objective of this study is to investigate the number of clustering with partitioning approach i.e. K-Means (KM) with two simulation scenarios.

Introduction to Machine Learning with Python

Every day large and increasing amounts of unstructured information are created, putting ever more demands on retrieval methods, classification, automatic data analysis and management. Clustering is an important and efficient way for organizing and analyzing information and data. One of the most widely used dynamic clustering algorithms is k-means clustering. This dissertation presents our k-centers Min-Max dynamic clustering algorithm (KCMRM). These algorithms are designed to modify k-means in order to achieve improved performance and help with specific goals in certain domains. These two algorithms can be applied to many fields such as wireless sensor networks, server or facility location optimization, and molecular networks. Their application in wireless sensor networks are described in this dissertation. The k-centers Min-Max clustering algorithm uses a smallest enclosing disk/sphere algorithm to attain a minimum of the maximum distance between a cluster node and data nodes. Our approach results in fewer iterations, and shorter maximum intra-cluster distances than the standard k-means clustering algorithm with either uniform distribution or normal distribution. Most notably, it can achieve much better performance when the size of clusters is large, or when the clusters includes large numbers of member nodes in normal distribution. The k-centers mean-shift reverse mean-shift dynamic clustering algorithm (KCMRM). These algorithms are designed to modify k-means in order to achieve improved performance and help with specific goals in certain domains. These two algorithms can be applied to many fields such as wireless sensor networks, server or facility location optimization, and molecular networks. Their application in wireless sensor networks are described in this dissertation. The k-centers Min-Max clustering algorithm uses a smallest enclosing disk/sphere algorithm to attain a minimum of the maximum distance between a cluster node and data nodes. Our approach results in fewer iterations, and shorter maximum intra-cluster distances than the standard k-means clustering algorithm with either uniform distribution or normal distribution. Most notably, it can achieve much better performance when the size of clusters is large, or when the clusters includes large numbers of member nodes in normal distribution. The k-centers mean-shift reverse mean-shift dynamic clustering algorithm is proposed to solve the “empty cluster” problem which is caused by random deployment. It employs a Gaussian function as a kernel function, discovers the relationship between mean shift and gradient ascent on the estimated density surface, and iteratively moves cluster nodes away from their weighted means. This results in cluster nodes which better accommodate the distribution of data nodes. The k-centers mean-shift reverse mean-shift algorithm can not only reduce the number of empty clusters, but can also make the sizes of clusters are more evenly balanced compared to k-means and k-centers Min-Max clustering algorithms. In wireless sensor networks, addressing energy dissipation is a key issue. For heterogeneous wireless sensor networks, energy consumption to transmit data is proportional to the distance between sensor nodes and cluster heads or to a base station. Clustering is one of the best methods to reduce energy dissipation and extend network lifetimes. The k-centers Min-Max and k-centers mean-shift reverse mean-shift clustering algorithms are applied to two proposed protocols, KCMM and KCMRM, for wireless sensor networks. Desirable features of the proposed clustering protocols KCMM and KCMRM include: energy efficiency; distributed and localized data aggregation; adaptation to changes in sensor distribution; robustness to partial damage; and self-recovery. Besides the above features, KCMRM protocol can make use of cluster heads efficiently and can reduce empty clusters.

Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020

XploRe® - Application Guide

This book presents recent research in intelligent and fuzzy techniques. Emerging conditions such as pandemic, wars, natural disasters and various high technologies force people for significant changes in business and social life. The adoption of digital technologies to transform services or businesses, through replacing non-digital or manual processes with digital processes or replacing older digital technology with newer digital technologies through intelligent systems is the main scope of this book. It focuses on revealing the reflection of digital transformation in our business and social life under emerging conditions through intelligent and fuzzy systems. The latest intelligent and fuzzy methods and techniques on digital transformation are introduced by theory and applications. The intended readers are intelligent and fuzzy systems researchers, lecturers, M.Sc. and Ph.D. students studying digital transformation. Usage of ordinary fuzzy sets and their extensions, heuristics and metaheuristics from optimization to machine learning, from quality management to risk management makes the book an excellent source for researchers.

Applied Computing and Information Technology
In the past several years, DNA microarray technology has attracted tremendous interest in both the scientific community and in industry. With its ability to simultaneously measure the activity and interactions of thousands of genes, this technology promises unprecedented new insights into mechanisms of living systems. Currently, the primary and prognosis, drug discovery (pharmacogenomics), and toxicological research (toxicogenomics). Typical scientific tasks addressed by microarray experiments include the identification of coexpressed genes, discovery of sample or gene groups with similar expression patterns, identification of genes whose expression patterns are highly differentiating with respect to a set of discerned biological entities (e.g., tumor types), and the study of gene activity patterns under various stress conditions (e.g., chemical treatment). More recently, the discovery, modeling, and simulation of regulatory gene networks, and the mapping of expression data to metabolic pathways and chromosome loci, have been added to the list of scientific tasks that are being tackled by microarray technology. Each scientific task corresponds to one or more so-called data analysis tasks. Different types of scientific questions require different sets of data analytical techniques. Broadly speaking, there are two classes of elementary data analysis tasks, predictive modeling and pattern-detection. Predictive modeling tasks are concerned with learning a classification or estimation function, whereas pattern-detection methods screen the available data for interesting, previously unknown regularities or relationships.

Optimizing Web Search Results for Image. K-means Clustering Algorithm

"In the world of big data, analysis by traditional statistical methods is no longer sufficient. The amount of data and the number of potential relationships that could be analyzed is simply too complex to conduct manually. In this video, you’ll learn a better way: how to automate the analysis of big data by using machine learning techniques. In particular, you’ll learn the concepts behind clustering, decision trees, and random forests, and you’ll incorporate these methods inside R to construct a set of machine learning algorithms; and then you’ll deploy these algorithms against a real-world dataset to perform a high-value business analysis of the data. Course prerequisites include basic knowledge of linear algebra, probability, statistics, and familiarity with R."—Resource description page.

Detecting Outliers

Clustering is the usual starting point for unsupervised machine learning. This lesson introduces the k-means and hierarchical clustering algorithms, implemented in Python code. Why is it important? Whenever you look at a data source, it’s likely that the data will somehow form clusters. Datasets with higher dimensions become increasingly more difficult to “eyeball” based on human perception and intuition. These clustering algorithms allow you to discover similarities within data at scale, without first having to label a large training dataset. What will you learn—and how you can apply it to understand how the k-means and hierarchical clustering algorithms work. Create classes in Python to implement these algorithms, and learn how to apply them in example applications. Identify clusters of similar inputs, and find a representative value for each cluster. To prepare you to use your own implementations or reuse algorithms implemented in scikit-learn. This lesson is for you because People interested in data science need to learn how to implement k-means and bottom-up hierarchical clustering algorithms. Prerequisites Some experience writing code in Python Experience working with data in vector or matrix format Materials or downloads needed in advance Download this code, where you’ll find this lesson’s code in Chapter 19, plus you’ll need the linear algebra functions from Chapter 4. This lesson is taken from Data Science from Scratch by J oel Grus.

Data Warehousing and Mining: Concepts, Taxonomies, Tools, and Applications

Cluster analysis, also called segmentation analysis or taxonomy analysis, creates groups, or clusters, of data. Clusters are formed in such a way that the same cluster is very similar and objects in different clusters are very distinct. Measures of similarity depend on the application. Hierarchical Clustering groups data over a variety of scales by creating a cluster tree or dendrogram. The tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level are joined as clusters at the next level. This allows you to decide the level or scale of clustering that is most appropriate for your application. The Statistics and Machine Learning Toolbox function clusterdata performs all of the necessary steps for you. It incorporates hierarchical clustering algorithms work. Create classes in Python to implement these algorithms, and learn how to apply them in example applications. Identify clusters of similar inputs, and find a representative value for each cluster. To prepare you to use your own implementations or reuse algorithms implemented in scikit-learn. This lesson is for you because People interested in data science need to learn how to implement k-means and bottom-up hierarchical clustering algorithms. Prerequisites Some experience writing code in Python Experience working with data in vector or matrix format Materials or downloads needed in advance Download this code, where you’ll find this lesson’s code in Chapter 19, plus you’ll need the linear algebra functions from Chapter 4. This lesson is taken from Data Science from Scratch by J oel Grus.

Machine Learning in R

Raw data are classified using clustering techniques in a reasonable manner to create disjoint clusters. A lot of clustering algorithms based on specific parameters have been proposed to access a high volume of datasets. This paper focuses on cluster analysis based on neotrophic set implication, i.e., a k-means algorithm with a threshold-based clustering technique. This algorithm addresses the shortcomings of the k-means clustering algorithm by overcoming the limitations of the threshold-based clustering algorithm. To evaluate the validity of the proposed method, several validity measures and validity indices are applied to the Iris dataset (from the University of California, Irvine, Machine Learning Repository), along with k-means and threshold-based clustering algorithms. The proposed method results in more segregated datasets with compacted clusters, thus achieving higher validity indices. The method also eliminates the limitations of threshold-based clustering algorithm and validates measures and respective indices along with k-means and threshold-based clustering algorithms.

STATISTICS and DATA ANALYSIS with MATLAB. CLUSTER ANALYSIS and APPLICATIONS

Academic Paper from the year 2020 in the subject Computer Science - Technical Computer Science, grade: 9.5 , language: English, abstract: This paper deals with a way to optimize the search results for image searches by proposing a k-means clustering algorithm. The proposed framework attempts to optimize image search results by adopting a vectorization method which involves textual features extraction and then applying a k-means clustering algorithm to group similar images. The aim of the work is to develop a method that can handle a query term in a reasonably short time and return the results with higher accuracy. With each passing day, the amount of visual information on the internet, such as videos and images, is growing rapidly at an alarming rate, thereby making it difficult for a user to search for the necessary content. Users need to spend vast amounts of time in shifting through an extensive list of search results until they can find the required relevant information. To resolve this problem and to provide better image retrieval results to a user, a clustering framework is suggested in this paper. Cluster Analysis or Clustering is a concept which defines the discipline of grouping similar objects or data items into clusters. A cluster is said to be a collection of data items. These formed clusters of data items differ in characteristics and features. Hence, clustering can be defined as a solution for classifying web search results effectively for searching data items. Clustering allows users to identify their required group at a glance by looking at the cluster labels. Hence, it saves time while searching on the internet.

K-Means Clustering Algorithms Applied to Knock Detection in Gasoline Engines

Dhiraj, a data scientist and machine learning evangelist, continues his teaching of machine learning algorithms by explaining through both lecture and practice the K-Means Clustering algorithm in Python in this video series. Click here to watch all of Dhiraj Kumar’s machine learning videos. Learn all about K-Means Clustering Using Python and the jupyter notebook in this video series covering these seven topics: Introducing K-Means Clustering. This first topic in the K-Means Clustering series introduces this unsupervised machine learning algorithm as well as K-means clustering concepts such as centroids and inertia. K-means clustering works well when we have unlabeled data. The outputs of K-means clustering are described as well as the uses of this algorithm in areas such as customer segmentation, insurance fraud detection, and document classification. K-Means Clustering Advantages and Disadvantages. This second topic in the K-Means Clustering series...
covers where K-means clustering works well and where it doesn't work well. K-means clustering guarantees convergence, works well with large datasets, and provides low computation cost. Disadvantages include that it is difficult to predict the number of clusters or the value of K, can lack consistency, and has cluster shape restriction. Choosing the Value of Parameter K. This third topic in the K-Means Clustering series explains how to choose the best value for K where K is the number of clusters. The Elbow, Silhouette, and Gap Statistic methods are discussed for choosing the optimal value for K. K-Means Clustering Model in Python. This fourth topic in the K-Means Clustering series shows you how to create a K-means clustering model in Python. Practice the steps of initializing, assigning, and updating to implement this algorithm in Python using the jupyter notebook. You can implement K-means clustering using Scikit-Learn. K-Means Clustering Mini Batch. This fifth topic in the K-Means Clustering series explains how to perform mini batch clustering in Python. Learn why mini-batch is important in K-Means clustering and how it works on data sets. Follow along in this hands-on session. K-Means Clustering Evaluation Method. This sixth topic in the K-Means Clustering series explains how to perform the K-Means Clustering Evaluation Method. Practice applying four evaluation methods: Sum of Squared Error Method, Scatter Criteria, Rand Index, and the Precision Recall Measure. K-Means Clustering Predict.

Machine Learning Series

This book gathers the outcomes of the 7th International Conference on Applied Computing and Information Technology (ACIT 2019), which was held on May 29–31, 2019 in Honolulu, Hawaii. The aim of the conference was to bring together researchers and scientists, businesspeople and entrepreneurs, teachers, engineers, computer users, and students to discuss the various fields of computer science and to share their experiences and exchange new ideas and information. Further, the conference creates an opportunity for face-to-face contact between computer scientists and the users of computer and information science, and discussed the practical challenges encountered in their work and the solutions they adopted to overcome them. The book highlights the best papers from those accepted for presentation at the conference. They were chosen based on review scores submitted by members of the program committee and underwent further rigorous rounds of review. From this second round, 15 of the conference’s most promising papers were selected for this Springer (SCI) book and not the conference proceedings. We eagerly await the important contributions that we know these authors will make to the field of computer and information science.

Probabilistic Machine Learning

Cooperation in Classification and Data Analysis

Potential Halal Tourism Destinations with Applying K-Means Clustering

We propose two distribution-based clustering algorithms called K-groups. Our algorithms group the observations in one cluster if they are from a common distribution. Energy distance is a non-negative measure of the distance between distributions that is based on Euclidean distances between random observations, which is zero if and only if the distributions are identical. We use energy distance to measure the statistical distance between two clusters, and search for the best partition which maximizes the total between clusters energy distance. To implement our algorithms, we apply a version of Hartigan and Wong's moving one point idea, and generalize this idea to moving any m points. We also prove that K-groups is a generalization of the K-means algorithm. K-means is a limiting case of the K-groups generalization, with common objective function and updating formula in that case. K-means is one of the well-known clustering algorithms. From previous research, it is known that K-means has several disadvantages. K-means performs poorly when clusters are skewed or overlapping. K-means can not handle categorical data, because the mean is not a good estimate of center. K-means can not be applied when dimension exceeds sample size. Our K-groups methods provide a practical and effective solution to these problems. Simulation studies on the performance of clustering algorithms for univariate and multivariate mixture distributions are presented. Four validation indices (diagonal, Kappa, Rand and corrected Rand) are reported for each example in the simulation study. Results of the empirical studies show that both K-groups algorithms perform as well as K-means when clusters are well-separated and spherically shaped, but K-groups algorithms perform better than K-means when clusters are skewed or overlapping. K-groups algorithms are more robust than K-means with respect to outliers. Results are presented for three multivariate data sets, wine cultivars, dermatology diseases and oncology cases. In our real data examples, the performance of both K-groups algorithms are better than the performance of K-means in each case.

Bayesian Weighted K-Means Clustering Algorithm as Applied to Cotton Trash Measurement

Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on the main aspects of data clustering: Methods, deep clustering techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semi-supervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation. In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to gain detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.

Clustering and Fuzzy Techniques

Epilepsy is a chronic disorder, the hallmark of which is recurrent, unprovoked seizures. Many people with epilepsy have more than one type of seizures and may have other symptoms of neurological problems as well. Epilepsy is caused due to sudden recurrent firing of the neurons in the brain. The symptoms are convulsions, dizziness and confusion. One out of every hundred persons experiences a seizure at some time in their lives. It may be confused with other events like strokes or migraine. Unfortunately, the occurrence of an epileptic seizure seems unpredictable and its process still is hardly understood. In India, the number of persons suffering from epilepsy is increasing every year. The complexity involved in the diagnosis and therapy has to be cost effective. In this project, the authors applied an algorithm which is used for the classification of the risk level of epilepsy in epileptic patients from Electroencephalogram (EEG) signals. Dimensionality reduction is done on the EEG dataset by applying Power Spectral density. The KNN Classifier and K-Means clustering is implemented on these spectral values to epilepsy risk-level detection. The Performance Index (PI) and Quality Value (QV) are calculated for the above methods. A group of twenty patients with known epilepsy findings are used in this study.

Food Security, Poverty and Nutrition Policy Analysis

K-means and Hierarchical Clustering with Python

The purpose of this book is to thoroughly prepare the reader for applied research in clustering. Cluster analysis comprises a class of statistical techniques for classifying multivariate data into groups or clusters based on their similar features. Clustering is nowadays widely used in several domains of research, such as social sciences, psychology, and marketing, highlighting its multidisciplinary nature. This book provides an accessible and comprehensive introduction to clustering and offers practical guidelines for applying clustering tools by carefully chosen real-life datasets and expert data analyses. The procedures addressed in this book include traditional hard clustering methods and up-to-date developments in soft clustering. Attention is paid to practical examples and applications through the open source statistical software R. Commented R code and output for conducting, step by step, complete cluster analyses are available. The book is intended for researchers interested in applying clustering methods. Basic notions on theoretical issues and on R are provided so that professionals as well as novices with little or no background in the subject will benefit from the book.
Big Data Analytics With Matlab: Segmentation Techniques

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to find your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Mueller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn:

- Fundamental concepts and applications of machine learning
- Advantages and shortcomings of widely used machine learning algorithms
- How to represent data using various Python packages
- How to use machine learning to draw conclusions from your own datasets using the R programming language and its powerful ecosystem of tools.

This book will get you started! Purchase of the print book includes a free ebook in PDF, Kindle, and ePUB formats from Manning Publications. About the book: Machine Learning with R, the tidyverse, and mlr gets you started in machine learning using R Studio and the awesome mlr machine learning package. This practical guide simplifies theory and avoids needlessly complicated statistics or math. All core ML techniques are clearly explained through graphics and easy-to-grasp examples. In each engaging chapter, you’ll put a new algorithm into action to solve a quirky predictive analysis problem, including Titanic survival odds, spam email filtering, and poisoned wine detection. What’s inside: Using the tidyverse packages to process and plot data. Techniques for supervised and unsupervised learning. Classification, regression, dimension reduction, and clustering algorithms. Proper use of techniques to fill gaps in your knowledge. About the authors:

Hefin I. Rhy's senior laboratory research scientist at the Francis Crick Institute. He runs his own YouTube channel on machine learning tutorials for R and in Studio. Table of contents:

1. INTRODUCTION TO MACHINE LEARNING
2. CLUSTERING
3. CLASSIFICATION
4. REGRESSION
5. LINEAR MODELS AND GENERALIZED LINEAR MODELS
6. NONLINEAR REGRESSION
7. MIXTURE MODELS AND EM ALGORITHM
8. DIMENSION REDUCTION
9. SELF-ORGANIZING MAPS
10. RECOMMENDER SYSTEMS
11. ADDITIONAL CLUSTERING ALGORITHMS
12. ADDITIONAL SUPERVISED LEARNING ALGORITHMS
13. ADDITIONAL UNSUPERVISED LEARNING ALGORITHMS
14. ADDITIONAL EVALUATION TOOLS
15. ADDITIONAL MACHINE LEARNING TOOLS
16. ADDITIONAL APPLICATIONS
17. ADDITIONAL RESOURCES

Summary:

Machine learning (ML) is a collection of programming techniques for discovering relationships in data. With ML algorithms, you can cluster and classify data for tasks like making recommendations or fraud detection and make predictions for sales trends, risk analysis, and other forecasts. Once the domain of academic data scientists, machine learning has become a mainstream business process, and tools like the easy-to-learn R programming language put high-quality data analysis within the reach of anyone who works with computer data. This book is a practical guide to machine learning.

- A direct data-cluster analysis method based on neutrosophic set implication

A Direct Data-Cluster Analysis Method Based on Neutrosophic Set Implication

An introduction to clustering with R

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce all the figures in this code can be run inside a web-based interactive computing environment.

Recent Applications in Data Clustering

Big data analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. With today's technology, it's possible to analyze your data and get answers from it almost immediately - an effort that's slower and less efficient with more traditional business intelligence solutions. MATLAB has the tools to work with large datasets and apply the necessary data analysis techniques. This book develops the work with Segmentations Techniques: Cluster Analysis and Unsupervised Classification. Cluster analysis, also called segmentation analysis or taxonomy analysis, partitions sample data into groups or clusters. Clusters are formed such that objects in the same cluster are more similar to each other than to those in other clusters. Statistics and Machine Learning Toolbox provides several clustering techniques and measures of similarity (also called distance measures) to create the clusters. Additionally, cluster evaluation determines the optimal number of clusters for the data using different evaluation criteria. Cluster visualization tools include dendrograms and silhouette plots. Hierarchical clustering groups data over a variety of scales by creating a cluster tree or dendrogram. The tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level are joined as clusters at the next level. This allows you to decide the level or scale of clustering that is most appropriate for your application. The Statistics and Machine Learning Toolbox function clustdata performs all of the necessary steps for you. It incorporates the pdist, linkage, and cluster functions, which may be used separately for more detailed analysis. The dendrogram function plots the cluster tree. k-Means Clustering is a partitioning method. The function kmeans partitions data into k mutually exclusive clusters, and returns the index of the cluster to which it has assigned each observation. Unlike hierarchical clustering, k-means clustering operates on actual observations (rather than the larger set of dissimilarity measures), and creates a single level of clusters. The distinction between k-means clustering and hierarchical clustering is that k-means is more suited to large datasets and hierarchical clustering is suited to small datasets.

INTELLIGENT AND FUZZY TECHNIQUES FOR EMERGING CONDITIONS AND DIGITAL

In this section, we will discuss the potential applications of these techniques in various domains. The main focus will be on how to use these techniques for data analysis and decision-making in intelligent and fuzzy systems.

1. Fuzzy Set Theory
2. Fuzzy Logic
3. Fuzzy Control
4. Fuzzy Pattern Recognition
5. Fuzzy Data Mining
6. Fuzzy Neural Networks
7. Fuzzy Decision Making

These techniques are particularly useful in situations where traditional data analysis techniques may not be applicable. For example, in situations where the data is imprecise or uncertain, fuzzy logic can be used to model and analyze the data. Additionally, these techniques can be used to improve the performance of machine learning algorithms by incorporating fuzzy logic into the training process.

In summary, the intelligent and fuzzy techniques discussed in this section have the potential to revolutionize data analysis and decision-making in both intelligent and digital systems. With the right application, these techniques can help us make better decisions and improve our understanding of complex systems.
beamajortechnequeofclusteringingeneral,regardlesswhetheroneisinterested in fuzzy methods or not. Moreover recent advances in clustering techniques are rapid and we require a new textbook that includes recent algorithms. We should also note that several books have recently been published but the contents do not include some methods studied herein.

Soft Computing and Signal Processing

In recent years, the science of managing and analyzing large datasets has emerged as a critical area of research. In the race to answer vital questions and make knowledgeable decisions, impressive amounts of data are now being generated at a rapid pace, increasing the opportunities and challenges associated with the ability to effectively analyze this data.

Clustering Techniques for Image Segmentation

This book offers a detailed application guide to XploRe - an interactive statistical computing environment. As a guide it contains case studies of real data analysis situations. It helps the beginner in statistical data analysis to learn how XploRe works in real life applications. Many examples from practice are discussed and analysed in full length. Great emphasis is put on a graphic based understanding of the data interrelations. The case studies include: Survival modelling with Cox's proportional hazard regression, Vitamin C data analysis with Quantile Regression, and many others.

K-centers

Cluster analysis, also called segmentation analysis or taxonomy analysis, partitions sample data into groups or clusters. Clusters are formed such that objects in the same cluster are very similar, and objects in different clusters are very distinct. Statistics and Machine Learning Toolbox provides several clustering techniques and measures of similarity (also called distance measures) to create the clusters. Additionally, cluster evaluation determines the optimal number of clusters for the data using different evaluation criteria. Cluster visualization options include dendrograms and silhouette plots. "Hierarchical Clustering" groups data over a variety of scales by creating a cluster tree or dendrogram. The tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level are joined as clusters at the next level. This allows you to decide the level or scale of clustering that is most appropriate for your application. The Statistics and Machine Learning Toolbox function clusterdata performs all of the necessary steps for you. It incorporates the pdist, linkage, and cluster functions, which may be used separately for more detailed analysis. The dendrogram function plots the cluster tree. "K-Means Clustering" is a partitioning method. The function kmeans partitions data into k mutually exclusive clusters, and returns the index of the cluster to which it has assigned each observation. Unlike hierarchical clustering, k-means clustering operates on actual observations (rather than the larger set of dissimilarity measures), and creates a single level of clusters. The distinctions mean that k-means clustering is often more appropriate for large datasets. "Clustering Using Gaussian Mixture Models" form clusters by representing the probability density function of observed variables as a mixture of multivariate normal densities. Mixture models of the gmdistribution class use an expectation-maximization (EM) algorithm to fit data, which assigns posterior probabilities to each component density with respect to each observation. Clusters are assigned by selecting the component that maximizes the posterior probability. Clustering using Gaussian mixture models is sometimes considered a soft clustering method. The posterior probabilities for each point indicate that each data point has some probability of belonging to each cluster. Like k-means clustering, Gaussian mixture modeling uses an iterative algorithm that converges to a local optimum. Gaussian mixture modeling may be more appropriate than k-means clustering when clusters have different sizes and correlation within them. Neural Network Toolbox provides algorithms, pretrained models, and apps to create, train, visualize, and simulate both shallow and deep neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. This book develops Cluster Techniques: Hierarchical Clustering, k-Means Clustering, Clustering Using Gaussian Mixture Models and Clustering using Neural Networks. The most important content in this book is the following: - Hierarchical Clustering - Algorithm Description - Similarity Measures - Linkages - Dendrograms - Verify the Cluster Tree - Create Clusters - k-Means Clustering - Create Clusters and Determine Separation - Determine the Correct Number of Clusters - Avoid Local Minima - Clustering Using Gaussian Mixture Models - Cluster Data from Mixture of Gaussian Distributions - Cluster Gaussian Mixture Data Using Soft Clustering - Tune Gaussian Mixture Models - Shallow Networks for Pattern Recognition, Clustering and Time Series - Fit Data with a Shallow Neural Network - Classify Patterns with a Shallow Neural Network - Cluster Data with a Self-Organizing Map - Shallow Neural Network Time-Series Prediction and Modeling

Cluster Analysis With Matlab

This report presents an integrated outlier detection method, which is named "An Approach to Detect Outlier by Integrating Univariate Outlier Detection and K-means Algorithm." It provides efficient outlier detection and data clustering capabilities in the presence of outliers, and based on filtering of the data after univariate analysis. This algorithm is divided into two stages. The first stage provides Univariate outlier analysis. The main objective of the second stage is an iterative removal of objects, which are far away from their cluster centroids by applying k-means algorithm. The removal occurs according to the minimization of the value of sum of the distances of all the points to their respective centroid in all the clusters. Finally, we provide experimental results from the application of our algorithm on several datasets to show its effectiveness and usefulness. The empirical results indicate that the proposed method was successful in detecting outliers and promising in practice.

Data Representations, Transformations, and Statistics for Visual Reasoning

Analytical reasoning techniques are methods by which users explore their data to obtain insight and knowledge that can directly support situational awareness and decision making. Recently, the analytical reasoning process has been augmented through the use of interactive visual representations and tools which utilize cognitive, design and perceptual principles. These tools are commonly referred to as visual analytics tools, and they can be built by means of a variety of disciplines. This chapter provides an introduction to young researchers as an overview of common visual representations and statistical analysis methods utilized in a variety of visual analytics systems. The application and design of visualization and analytical tools are subject to design decisions, parameter choices, and many conflicting requirements. As such, this chapter attempts to provide an initial set of guidelines for the creation of the visual representations and areas where graphics can be enhanced through interactive exploration. Basic analytical methods are explored as means of enhancing the visual analysis process, moving from visual analysis to visual analytics. Table of Contents: Data Types / Color Schemes / Data Preconditioning / Visual Representations and Analysis / Summary

Algorithms for Fuzzy Clustering

Design clever algorithms that discover hidden patterns and draw responses from unstructured, unlabeled data. Key Features Build state-of-the-art algorithms that can solve your business’ problems Learn how to find hidden patterns in your data Review key concepts with hands-on exercises using real-world datasets Book Description Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and features of R that enable you to understand your data better and get answers to your most pressing business questions. This book begins with the most important and commonly used unsupervised learning - clustering - and explains the three main clustering algorithms: k-means, divisive, and agglomerative. Following this, you’ll study market basket analysis, kernel density estimation, principal component analysis, and anomaly detection. You’ll be introduced to these methods using code written in R, with further instructions on how to work with, edit, and improve R code. To help you gain a practical understanding, the book also features useful tips on using these applications to real business problems, including market segmentation and fraud detection. By working through interesting activities, you’ll explore data encoders and latent feature models. By the end of this book, you will have a better understanding of data and built upon existing methods, such as outlier detection, Mahalanobis distances, and contextual and collective anomaly detection. What you will learn Implement clustering methods such as k-means, divisive, and agglomerative, and evaluate their performance. Learn how to use R to analyze data and gain insights. By working through interesting activities, you’ll explore data encoders and latent variable models. By the end of this book, you will have a better understanding of data and built upon existing methods, such as outlier detection, Mahalanobis distances, and contextual and collective anomaly detection.
understand the concepts of this book, you should also know basic mathematical concepts, including exponents, square roots, means, and medians.

Application of Wavelets and K-means Clustering to Analyse Time-series Medical Data

The book presents selected research papers on current developments in the field of soft computing and signal processing from the International Conference on Soft Computing and Signal Processing (ICSCSP 2018). It includes papers on current topics such as soft sets, rough sets, fuzzy logic, neural networks, genetic algorithms and machine learning, discussing various aspects of these topics, like technological, product implementation, contemporary research as well as application issues.

Data Clustering

This book presents the workings of major clustering techniques along with their advantages and shortcomings. After introducing the topic, the authors illustrate their modified version that avoids those shortcomings. The book then introduces four modified clustering techniques, namely the Optimized K-Means (OKM), Enhanced Moving K-Means-1(EMKM-1), Enhanced Moving K-Means-2(EMKM-2), and Outlier Rejection Fuzzy C-Means (ORFCM). The authors show how the OKM technique can differentiate the empty and zero variance cluster, and the data assignment procedure of the K-mean clustering technique is redesigned. They then show how the EMKM-1 and EMKM-2 techniques reform the data-transferring concept of the Adaptive Moving K-Means (AMKM) to avoid the centroid trapping problem. And that the ORFCM technique uses the adaptable membership function to moderate the outlier effects on the Fuzzy C-meaning clustering technique. This book also covers the working steps and codings of quantitative analysis methods. The results highlight that the modified clustering techniques generate more homogenous regions in an image with better shape and sharp edge preservation. Showcases major clustering techniques, detailing their advantages and shortcomings; includes several methods for evaluating the performance of segmentation techniques; Presents several applications including medical diagnosis systems, satellite imaging systems, and biometric systems.

A Practical Approach to Microarray Data Analysis

Clustering has emerged as one of the more fertile fields within data analytics, widely adopted by companies, research institutions, and educational entities as a tool to describe similar different groups. The book Recent Applications in Data Clustering aims to provide an outlook of recent contributions to the vast clustering literature that offers useful insights within the context of modern applications for professionals, academics, and students. The book spans the domains of clustering in image analysis, textual analysis of texts, replacement of missing values in data, temporal clustering in smart cities, comparison of artificial neural network variations, graph theoretical approaches, spectral clustering, multiview clustering, and model-based clustering in an R package. Applications of image, text, face recognition, speech (synthetic and simulated), and smart city datasets are presented.

K-GROUPS

This book is concerned with a fundamentally novel approach to graph-based pattern recognition based on vector space embedding of graphs. It aims at condensing the high representational power of graphs into a computationally efficient and mathematically convenient feature vector. This volume utilizes the dissimilarity space representation originally proposed by Duin and Pekalska to embed graphs in real vector spaces. Such an embedding gives one access to all algorithms developed in the past for feature vectors, which has been the predominant representation formalism in pattern recognition and related areas for a long time.

Graph Classification and Clustering Based on Vector Space Embedding

Food Security, Poverty and Nutrition Policy Analysis: Statistical Methods and Applications, Third Edition combines statistical data analysis and computer literacy, applying the results to develop policy alternatives through a series of statistical methods for real world food insecurity, malnutrition and poverty problems. The book presents the latest uses of statistical methods for policy analysis using the open source statistical environment R. In addition to having the original Stata files and applications, a new chapter on obesity brings in new datasets for analysis to effectively demonstrate the use of such data for addressing policy issues. Finally, program evaluation methods which can be directly applied to the data on food security, nutrition, poverty indicators and causal factors are included. This unique, real-world data takes the reader through a “hands-on” approach toward econometric practice whereby they can also test the effects of policy and program interventions. Further, this is the first book to explore actual data with STATA and R statistical packages that also provides a line-by-line guide to the programming and interpretation of results. Provides a revised and updated tome on the latest technology, assessment advances and policy insights surrounding food security. Combines case-studies with data-based analysis includes self-contained, downloadable datasets, statistical appendices, computer programs, and interpretations of the results for policy applications.

Advances in K-means Clustering

This two-volume set LNCIS 9771 and LNCIS 9772 constitutes - in conjunction with the volume LNAI 9773 - the refereed proceedings of the 12th International Conference on Intelligent Computing, ICIC 2016, held in Lanzhou, China, in August 2016. The 221 full papers and 15 short papers of the three proceedings volumes were carefully reviewed and selected from 639 submissions. The papers are organized in topical sections such as signal processing and image processing; information security, knowledge discovery; data mining; systems biology; and intelligent computing in computational biology; intelligent computing in scheduling; information security; advances in swarm intelligence: algorithms and applications; machine learning and data analysis for medical and engineering applications; evolutionary computation and learning; independent component analysis; compressed sensing, sparse coding; social computing; neural networks; nature inspired computing and optimization; genetic algorithms; signal processing; pattern recognition; biometrics recognition; image processing; information security; virtual reality and human-computer interaction; healthcare informatics; theory and methods; artificial bee colony algorithms; differential evolution; memetic algorithms; swarm intelligence and optimization; soft computing; protein structure and function prediction; advances in swarm intelligence: algorithms and applications; optimization, neural network, and signal processing; biomedical informatics and image processing; machine learning; knowledge discovery and natural language processing; nature inspired computing and optimization; intelligent control and automation; intelligent data analysis and prediction; computer vision; knowledge representation and expert system; bioinformatics.